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Objectives of WP7 

 Report on user requirements for each SEWA application (D7.1) 

 Initial version of the Ad Recommendation Engine (D7.2) 

 Second version of the Ad Recommendation Engine (D7.4) 

 Final version of the sentiment-driven Ad Recommendation 

Engine (D7.6) 



User requirements 

 Purpose of the ad recommendation engine:  

 Enable use emotional and behavioral information to show right ads to the 
right audience 

 Why digital video advertising? 

 Projected spend $28.08 billion in 2020 in US alone* 

 Core area of expertise for Realeyes, 5+ years experience 

 Target user groups 

 The advertiser (brand owner) 

 The consumer (audience) 

 The publisher (content owner) 

* http://www.emarketer.com/Article/Digital-Video-Advertising-Continues-Expand/1013722 



User requirements 

 How is it contributing to the existing industry methods? 

 Can be used for pre-testing to drive better targeting and ad design 
improvement 

 Richer second by second data, allowing better impact understanding 

 Links ad impressions with user impact and gives information about 
attitudinal impact of the ad 

 Fills the measurement gap with brand awareness campaigns 

 Fast and inexpensive (compared to similar methods, e.g. EEG) 

 Matching emotional level of the content with ads 



User requirements 

 Solution development requires partner participation: 

 Brands: 

• Ultimate benefactor 

• Own crucial sales or social media data 

• Fully aware of any marketing campaigns or seasonality effects 

• Can help measure recommendation effectiveness 

 Data Management Platforms (DMPs): 

• Know what marketing campaigns are being executed 

• Fully aware and driven by the challenges of the target user groups 

• Compete to get higher quality data 

• Can help measure recommendation effectiveness 



Ad Recommendation Engine 

 A general recommender engine predicts a score that a user would add to 

an item. Items with the highest scores are then recommended to the user.  

 Prediction can be based on matching similarities between users and items 

and on known preferences of the users (history): integrated collaborative 

filtering approach 

 Our goal: recommend –show– maximally relevant ads to viewers.  



Ad Recommendation Engine 

User similarity 
based 

Item similarity 
based 

[http://horicky.blogspot.hu/2011/09/recomm
endation-engine.html] 



Challenges 

 No individual rating or action available as a score for relevance 

 Difficult to define similarities between ads 

 Difficult to connect viewers’ attributes with ads 



Our solution 

 Relevance can be defined by sales lift scores (ad’s contribution to sales) 

 Interaction between ad and viewer can be measured via emotion responses 

 Recommendations can be made at group level (for user segments) 

 Viewers  can be clustered by similarities using past emotion responses and 

external attributes (tracking data, meta-info) 

 Ads can be clustered by similarities of emotion response profiles (aggregate 

group responses) 
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Our solution – Attributes 

Attributes: 
• Emotion responses 
• Tracking data (history, demographics, 

location) 
• Meta-info (personality, interest) 



Our solution – Audience Selection 

Step #1 Train a model that can predict sales performance of an ad (score) from 

emotion responses of viewers.  
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data 

Predicted 
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Ad 

Such model can be used for recommendation of whether to air or not air the ad 

based on panel response data. 



Our solution – Audience Selection 

Step #2 For a given ad identify  those viewers whose emotion responses would 

yield the highest predicted score. 
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Our solution – Audience Selection 

Step #3 Recommend the ad to viewers most similar to the ones selected above. 
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Our solution – Audience Selection 

Step #4 For viewers with past measured emotion responses recommend new ads 

that will likely elicit emotion responses yielding high predicted scores.  
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Step #1: build a sales lift prediction 
model (M2-M14) 

Task #1: Collect emotion responses from panel to ads with available sales lift 

data (provided by MARS ) 

Task #2: Exploratory Data Analysis for optimal data representation 

Task #3: Create, fine-tune and validate predictive models. 

Constraints: cost, speed, transparency 



Results #1: Data Collection 
Data collection:  

• We have built an online, scalable, cloud-based, dynamic data collection 

platform that allows for cost optimization, demographics tracking and 

multi-modal data collection. 

• World’s largest emotion data (discrete facial expressions) linked to sales 

information (12k viewers, 149 ads, 42k views, 6 countries, 4 categories) 



Results #2: Signals 

Exploratory Data Analysis:  

• Created hand crafted representations  

based on existing shape alignment 

methods and facial expression 

classifiers (benchmark for SEWA 

integrated versions) 

“Smile Dynamics” signal 



Results #3: Modelling 

• We have built a low complexity  

ensemble model of simple linear 

regressors that can classify ads as high 

vs low performing in sales terms. Non-

linearity is introduced via thresholding 

• Modeling and results are submitted to 

the Special Issue of Image and Video 

Computing and presented at I-COM 



Results #4: Validation 

We have validated the obtained model 

by traditional k-fold Cross-Validation as 

well as by “Leave One Label Out” type 

validation scheme (to check robustness 

against  factors not considered in the 

model like region or product category)  



Results #5: Product extension 



Results #5: Product extension 



Step #2: Find optimal viewer 
segmentation (M14-M16) 

 Challenge 1: find robust segmentation method for panels of moderate size 

 Implement, test and validate score driven brute force segmentation 

 Implement, test and validate similarity based clustering using emotion 

response and/or meta-info based viewer representation 

 Idea: cluster responses based on deviation from average 



Step #3: Recommend ads to most 
similar target audience (M16-M18) 

• Challenge 2: define representations and similarity metric that can be 

used to identify target audience 

• Target variables: Prediction accuracy, Brand Lift scores, View Through 

Conversion Quartiles, Click Through Rates 

• Benchmarking: External validation with our partners 

 

 



Work from M19 
 Expand and improve ad recommendation engine with new sentiment 

analysis technology provided by SEWA partners. Evaluation will be done 

against our own baseline solution 

 Improve audience segmentation by using non-sales data like social media 

activity (#views, likes or shares on Youtube, Facebook, Twitter) 

 “Instant prediction” of emotion responses from audio-visual content and 

context. This would yield approximate ad matching and fast targeting. 



Objectives 

 Report on user requirements for each SEWA application (D7.1) 

 Initial version of the Ad Recommendation Engine (D7.2) 

 Second version of the Ad Recommendation Engine (D7.4) 

 Final version of the sentiment-driven Ad Recommendation 

Engine (D7.6) 
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