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behaviour
analysis
_ application
face & audio PPlications
F 9
Milestones M1 M2 S-ea{-.;:res M3 M4
Month 1 3 5 7 9 11 113 |15 (17 |19 |21 |23 |25 |27 (29 31 |33 |35 |37 |39 42
Data acquisition and SE\_NA £
annotation design and
WP1 release
Development of robust and
cross-language audio-visual
WP2 features
Development of behavioural feature extraction
WP3 (bodylanguage, FAU, vocalisations, etc.)
Development of continuous-
valued audio-visual
WP4 sentiment models
Development of behavioursimilarity

WP5 measures
WP6 Development of mimicry, rapport, recognition
WP7 Iterative requirements engineering and application development
WP8 Dissemination and communication activities; ethical review
WP9 Coordination and management




| ow-level feature extraction

¢ Process audio-visual input
(e.g. facial expressions, vocalisations and casual speech)
» Real-life conditions
» Multiple languages

«* Obtain:
» Acoustic features
» Visual features (ICL)

“* Requirements:
» Independence of language, user facial/vocal characteristics
» Environmental robustness (e.g. equipment, background noise)
* Enables detection of sentiment, affect and intentions

Imperial College



Objectives

*» Task 2.2: Environmentally robust visual features

- Robust visual feature extractor (D2.2, February 2016, M13)

Imperial College



*»» Goal: to accurately track facial

landmarks in SEWA applications.
¢ Further requirements:
‘*Reliabllity.

“*High processing speed.

Imperial College
London



Incremental Face Alignment

*» Given new unseen examples, automatically update the existing

fitting models.
¢ Challenges:
*How to update the model efficiently?

“*How to incorporate new training data?

Imperial College



Cascade Linear Regression (CLR)

“ Generate perturbed shapes within a predefined range.
*» Compute HOG features around each landmark point.

¢ Find a function that can map the features to the displacement
between the ground truth and perturbed shapes, using CLR:

ﬂp(zl ﬂp("l}

Sg-

Imperial College
London




Parallel-CLR (Par-CLR)

¢ Learning the cascade of regression is by nature a Monte-Carlo
procedure.

*»Collect the statistics for the shape parameters at each level.

**Draw the perturbations from the distribution to train the regressors

In parallel.
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Incremental Par-CLR (IPar-CLR)

*» Uses incremental linear least squares solution to perform the

updates.

*» Allows for all the level of the cascade to be updated with new

examples independently In

narallel.

Imperial College
London



Software Implementation

®

» IPar-CLR method is implemented into the Chehra tracker.

®

“*Use daemon process for crash recovery.
*»Can track 8 streams at 50 fps In parallel.

“*Now Integrated into the SEWA back-end server.
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Result on LPFW and Helen Data
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Result on SEWA Data
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Imperial College
London



Environmentally robust visual features

<« Facial landmark tracking \/

Imperial College



Objectives

*» Task 2.1: Environmentally robust acoustic features

- Improved acoustic feature extractor (D2.1, October 2015, M9)

Imperial College



Environmentally robust acoustic features

1. Selection of features that are correlated with target labels in
noisy data

*» State-of-the-art acoustic emotion recognition feature sets

*» Bag-of-audio-words (BoAW) representations
(generated, e.qg., by Vector Quantisation or Deep Semi-NMF)

2. Feature enhancement by deep de-noising auto-encoders such
as LSTM-RNN

*» On raw spectral features (as in previous studies on ASR)

*» Learning of non-linear distortions in
(a) Emotion-related features, e.g., low-level descriptor contours
(b) BOAW representations



State-of-the-art feature sets

Selection of noise robust features:

s 132 features, including prosody, voice quality,
auditory spectrum, spectral / cepstral and deltas

¢+ Data: RECOLA

* Noise: “Smartphone”

1. convolutive, IR from Google Nexus one
2. + reverberation (convolutive)

3. + CHIME noise (additive, 6 dB SNR)



State-of-the-art feature sets

Correlation:
LLDs clean vs
3 noise types

++:
prosody, spectral

Voice quality

] Smartphone
T Smartphone hall

CHIME 6dB

PCC




Bag -of-Audio-Words
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Bag-of-Audio-Words

Split vector quantisation (SVQ) |
s

audio word sequence

Bl e e e e e RS ek

l vocabulary D I‘I 223

S1 7 [f1 LEEO fk] . x . S’nz [fam-m LE el f:ua4] word frequengy By )
CB;, iihvis CB,, BoAW

Wo=[w, W ] VAM Corpus (hegative vs.
| nonnegative emotions)
CBu, *» Raw features (1S09): 54.3 % (UA)
< BoAW with SVQ (1S09): 64.2 % (UA)
“Detection of Negative Emotions in Speech Signals Using Bags-of-Audio-Words”, - M

ACII, 2015 ASS A
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Bag-of-Audio-Words
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End-2-End Learning
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Convolutional Recurrent Network”, ICASSP, 2016 (Winner SPS StTrGr) Aa3AN



Emotion recognition using BoAW

* RECOLA:

= Dyadic conversation in French
= 46 subjects x 5 min = 230 min

= 6 annotators

CEE

Model Arousal Valence

Test Test
BoAW oS 430
BoAW+functionals 30 .465
Raw signal (CNN+BLSTM) .686 261
Baseline AVEC 15/ 16 .382/.648 BT 3D
SUBMITTED: “At the Border of Acoustics and Linguistics: Bag-of-Audio W ords for : -:l- /LR

the Recognition of Emotions in Speech”, Interspeech, 2016




Emotion recognition using BoAW

* Optimisation of delay (between shown emotion & gold standard)
and window size
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Deep Semi-NMF

Representation of acoustic features similar to
Bag-of-Audio-Words
Deep Semi-NMF model learns a hierarchical structure of features

Experiments:
Berlin Emo-DB

= Acoustic features: eGeMAPs (88 selected LLDs with functionals)

Results:
eGeMAPs: 78.2 % (UA)
eGeMAPs w/ Deep Semi-NMF: 82.5 % (UA)



Feature enhancement

To train de-noising auto-encoders, stereo data (noisy recordings
with corresponding time-aligned clean recordings) are required.

1. Data generated artificially, simulating various room reverberation
parameters and additive ambient noise \/

2. Artificial data augmented by real-life data by means of semi-
supervised learning



Feature enhancement

¢ Acoustic features corrupted by noise (recordings 'in the wild)

*+ Denoising autoencoders: remove distortions from features

feature enhancement

I
I
/ |
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: f istic
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Feature enhancement

s+ Results:

= Database: RECOLA
= Task: Arousal
= Baseline: LSTM
= Noise: CHIME noise w/ SNRs (12 dB - 0 dB)

clean 12 dB OdB 6 dB 3dB O dB
Heleelllee oo | bl | Do 526 472 420 329
enhancement
Tl Cec | 467 | od8 631 612 521 368
enhancement
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Feature enhancement

Enhancement of the raw speech signal

Deep LSTM-RNN

enhanced Fbank/ RNN-

speech feature feature enhanced

: == . speech : MFCC based
signal : extraction enh. features S

signal features Jprediction
St T : et S

noisy speech _3 ISTM- |—> clean speech noisy speec; — 35| pLsTM- |—> clean speech

: d : : features X : :
signal S¢ RNN signal S¢ t 5 RNN , features x¢
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Feature enhancement

Speech Enhancement by Deep LSTM-RNN for
Continuous Emotion Regression

validation set of RECOLA test set of RECOLA

0.700 0.700
0.650 Py — 0.650 [ g
Hleone . \ 0.600 ‘\\\
0.550 \ ¢ 0550
0.500 S 0.500 s
. —*—w/ signal + feature o —e—\/ signal + feature enh
0.400 enh 0.400 "/ feature enh
0.350 ——w/ feature enh 0.350 w/ signal enh
0.300 0.300 w/o enh

clean =:12dB+.29dB+ = -6dB = “3dB. "~ 0dB clean 12dB 9dB 6dB 3dB 0dB



Environmentally robust acoustic features

1. Selection of features that are correlated with target labels in
noisy data /
*» State-of-the-art acoustic emotion recognition feature sets
*» Bag-of-audio-words (BoAW) representations
(generated, e.qg., by Vector Quantisation or Deep Semi-NMF) //

2. Feature enhancement by deep de-noising auto-encoders such

as LSTM-RNN
< On raw spectral features /
*» Learning of non-linear distortions in

(a) Emotion-related features /

(b) BOAW representations



Objectives

% Task 2.3: Cross-lingual language-related features
- Improved acoustic-linguistic feature extractor

(D2.3, February 2016, M13)

Imperial College
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Automatic speech recognition

Acoustic
LLD features

extraction
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. *s
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£
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Automatic speech recognition

+» Based on Kaldi toolkit
s Features: MFCCs + A + AA

* AM: Context-dependent triphone models
trained by hybrid DNN-HMM
** LM: Kneser-Ney smoothed backoff 4-gram LM

¢ Training: LibriSpeech
(1000 hours of audiobooks, 2.3k speakers)

* Pre-trained LM, trained on 14.5k books taken from
Project Gutenberg



Automatic speech recognition

*» Results on LibriSpeech corpus:

WER (%)
Data set Panayotov, .
lCaccPoglc | et
Test clean 551 5.30
Test other 13.97 13.68

¢ Training corpora in-domain: Buckeye, COSINE




Feature enhancement for ASR

*+ AM Enhancing for noisy/reverberated speech recognition
* Feature enhancement (FE) + multi-stream (MS)
by BLSTM-RNN

enhanced (multi-
S;eﬁzr fgﬂa':ﬁgs MFCC stream)
9 features H hﬁM

N N - N

feature | BLSTM feature BLSTM predicted
extraction enhancement :\_Classification phonemes] :




Feature enhancement for ASR

Experimental results

Buckeye corpus (spontaneous)
train/dev/test=20.7h /2.6 h/ 2.4 h
vocab size = 9.1k words

CHIME noise

BLSTM-RNN: 3 hidden layers
Features: MFCC 1-12 + log-energy

SNR [dB]
WER [%] -6 -3 0 3 6 9 Avg. | Clean
Clean 158850629, s A |22 692 1 655 1 w2 O fe 400
Noisy 4.8 L (26| 699 1. 684 [-658:1 630 1 691 =562
Noisy + FE 675 1 656 1623 6141 591 1560 ( 622 | 556
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Feature enhancement for ASR

Experimental results

= WSJO corpus

= Reverberated by Aachen IR database

= Training w/ reverberation (w/o stairway)

Tested on
WER [%] Stili_rg\;\é)ay Stgﬂrg\(l)ay Stgi_rXVSay Stgi_r;\(/)ay S?La_i rlv:\glgy Avg.
Baseline 40.6 70.0 93.3 86.5 89.5 76.0
+ FE 19.6 30.0 63.0 38.5 51.5 40.5
+ re-training 215 28.5 47.1 32.4 38.7 33.6
Reverb. Train 19.4 30.1 56.7 43.2 51.9 40.3
e 18.5 24.6 42.5 29.4 36.1 30.2
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Feature enhancement for ASR

Experimental results
« WSJO corpus
* Track 2 of CHIME 2013

SNR [dB]
WER [%] -6 -3 0 3 6 9 Avg.
Baseline 70.4 631 58.4 5151 45.3 41.7 55.0
EE 62.0 54.6 50:1 44.7 40.3 37.0 48.2
FE + re-training 56.9 50.3 45.1 39.3 34.6 31.8 43.0
MS 58.6 50 .1 43.9 Gl 32.7 28.3 41.8
FE+re-training+MS | 56.1 48.3 40.5 35.9 314 2:0:7 39.9
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Acoustic-linguistic features

openWord module

Acoustic features

LLD k) | Bag-of-
i ' Audio- or)
extraction torend ;f'le.‘
=)
X
=
o {fwy, ..., wy} % o %
e e
Recognized , Words »

word sequence
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openXBOW - Bag-of-X-Words tool

** Implemented in Java

+» Fast and flexible
*» Multiple input/output formats: ARFF, CSV, Libsvm
«» JUnit tests

¢ Open source: GitHub repository



openXBOW - Bag-of-X-Words tool

*»» Generates single feature vector of
acoustic, visual & textual features

** Preprocessing:. standardisation, normalisation, VAD

** Windowing

“* Supervised codebook generation

“ Split vector quantisation

“* Multiple assignments

¢ Soft vector quantisation

** Term-frequency/inverse document-frequency weighting
“ N-grams, stopping

¢ Histogram normalisation
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openXBOW - Bag-of-X-Words tool

Preprocessing:
(V)AD

* Standardisation

* Normalisation

LLDs

Transcriptions (text)

ﬁ

p

LLD-codebook generation:
* Kmeans

* Kmeans++

e Random sampling

e Random sampling++
\ ping

4

p

Dictionary generation:
* MinTermFreq
* Stopping

G

N

Bag generation:

* Multi assignment
* Soft assighment

Bag generation:

* N-gram
* N-char-gram
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openXBOW - Bag-of-X-Words tool

Bag generation: @ : / \ |
* Multi assignment e
* Soft assignment Postprocessing oy
* Histogram ?h
Con_cate normalisation >
nation & oeibe =
weighting | O
Bag generation: * IDF-weighting a
W

* N-gram
* N-char-gram

% ) | 4




Natural language processing with openXBOW

* Gender recognition on SEWA (from transcriptions)
2-grams, log-IDF weighting, Naive Bayes (10-fold CV):

= British: 72.7 % (UA)
= German: 75.6 % (UA)

*» Cross-language gender recognition
multilingual dictionaries (10-fold CV):

= British 2> German: 62.1 % (UA)
= German -» British: 59.1 % (UA)



Natural language processing with openXBOW

* Sentiment analysis:
Thinknook database
1.5 Mio tweets, +/- sentiment

= WA: 75.8 % (UA: 74.8 %)
= WA:75.0 % Is state-of-the-art by Thinknook

"@MarialKanellis U know what I was thinking about? What
u sang at Otiz, was it one of your secret recordings?
Loved it anyway... Jay" =2 positive




Acoustic landmarks

*» Overcome the problem of language dependence in ASR

¢ Extract acoustic landmarks from fO / energy contours

* Find significant changes in speech production or perception

*+ More robust to noise and acoustic variations due to emotional
encoding

1. Voiced/unvoiced segments:
Based on continuity of the fO contour

2. Pseudo-vowels: Unsupervised detection of vocalic nuclel

3. P-center: Rythmic prominence of speech



Acoustic landmarks

*» Landmarks constitute a language independent dictionary

- BoW features are generated

s* Results on't

ne SEMAINE corpus:

Dimension | Partition UA (%)
Development 59.6
Arousal
Test 60.2
Development 56.7
Valence
Test 556




Acoustic-linguistic features

Retrieve features related to linguistic content, largely language and
context-independent

*» Multi-lingual dictionaries for BOAW generated from fully automatic /
syllabification of unlabelled multi-lingual speech data

¢ Generation of language-independent bag-of-words (BoW) type
representations by ASR, natural language processing and
machine translation systems: stemming, dictionary lookup and/or /
machine translation

< Linguistic Inquiry and Word Count (LIWC) features can be Not considered

generated from ASR outputs in twelve different languages s
open source
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Further work (selected)

Face Reading from Speech — Predicting
Facial Action Units from Audio Cues
Interspeech 2015

Mean
57.3
65.0

UA [%0]
SVM
Deep NN

[ Upper Face Action Units
AU 1 AU 2 AU 4 AU S AU 6 AU 7
R e R R R O R
Inner Brow | Outer Brow | Brow Upper Lid Cheek Lid
Raiser Raiser Lowerer Raiser Raiser Tightener
*AU 41 *AU 42 *AU 43 AU 44_ AU 45 AU 46
BEsocoomED CWe
Lid Slit Eyes Squint Blink Wink
Droop Closed
Lower Face Action Units
AU9 AU 10 AU 11 AU 12 AU 13 AU 14
s (S || WS (| T | Wit || Wl
== = | =R T= | e | =
Nose Upper Lip | Nasolabial | Lip Corner | Cheek Dimpler
Wrinkler Raiser Deepener Puller Puffer
AU 15 AU 16 AU 17 AUI8 | AU20 AU 22
= | 5 = = = g =
h — SN —dh =dl —dh —d
Lip Corner | Lower Lip Chin Lip Lip Lip
Depressor | Depressor Raiser Puckerer | Stretcher | Funneler
AU 23 AU 24 *AU 25 *AU 26 *AU 27 AU 28
- = —_— _ —
A=dii—=d— k= K= -d
Lip Lip Lips Jaw Mouth Lip
Tightener Pressor Part Drop Stretch Suck
- | % | 1 ; i I R J '.Il. 1




Further work (selected)

Cross Lingual Speech Emotion Recognition Using Canonical Correlation
Analysis on Principal Component Subspace
IEEE ICASSP 2016

Cross-Language Acoustic Emotion Recognition:
An Overview and Some Tendencies
IEEE/AAAC ACII 2015

Enhanced Semi-supervised Learning for Multimodal Emotion Recognition
IEEE ICASSP 2016

Continuous Estimation of Emotions in Speech by
Dynamic Cooperative Speaker Models
IEEE Transactions on Affective Computing



Further work (selected)

AVEC 2015 — The First Affect Recognition Challenge Bridging Across Audio,
Video, and Physiological Data
ACM Multimedia 2015

The ICL-TUM-PASSAU Approach for the MediaEval 2015

“Affective Impact of Movies” Task

MediakEval 2015

(Winning team (1./2./3. arousal/valence/violence — 22 registered teams))
Video: CNN of 1000 objects to detect (ILSVRC 2013)

negative

neutral
positive
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Demo

Clinton & Trump

Load config

Load audio
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Milestones M1 M2 S-ea{-.;:res M3 M4
Month 1 3 5 7 9 11 |13 15 17 |19 21 23 |25 27 29 |31 33 35 37 39 42
SEWA DB

WP1

Data acquisition and
annotation

design and

release

Wp2

Development of robust and
cross-language audio-visual

features

-> Improved acoustic feature extractor

- Robust visual feature extractor

behaviouy

(D2.1, Oct 15, M9) /
(D2.2, Feb 16, M13)

- Improved acoustic-linguistic feature extr. (D2.3, Feb 16, M13) \/
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