WP2: Low-level Feature Extraction

Björn Schuller Jie Shen

Automatic Sentiment Analysis in the Wild

															bet	avi	our				
											fa	ce 🖁	au	dīo	ar	aly: 1	sīs		ap	plica	tions
WP1	nes	11	П	11		M1			M2			feat	ure	S	M3						M4
Month	1	3	5	7	9	11	13	15	17	19	21	23	25	27	29	31	33	35	37	39	42
WP1		Dat	a acc anr	quisi notat	tion a ion	and	S de	EWA esign relea	DB and se												
WP2	De cro	Development of robust and cross-language audio-visual features																			
WP3		D	evel (b	opm ody l	ento angu	f beha age, F	avio AU,	ural f vocal	eatur Isati	re ex ons,	tract etc.)	on									
WP4		Development of contin valued audio-visua sentiment model										nuou Ial Is	s-								
WP5							D	evelo	opmei	nt of me	beh easu	aviou es	rsim	ilari	ty						
WP6							De	evelo	pmer	nt of	mim	cry, r	appo	rt, re	cogni	tion					
WP7						Itera	ti ve	requi	ireme	nts	engi	neeri	ngan	d a p	plica	tion	deve	lopm	ent		
WP8					Di	ssemi	nati	on ar	nd cor	mmu	inica	tion a	ctivi	ties;	ethic	al re	view				
WP9								Coo	ordina	atio	n and	man	ager	nent							

Low-level feature extraction

Process audio-visual input

(e.g. facial expressions, vocalisations and casual speech)

- Real-life conditions
- Multiple languages
- Obtain:
 - Acoustic features (Passau)
 - Visual features (ICL)
- Requirements:
 - Independence of language, user facial/vocal characteristics
 - Environmental robustness (e.g. equipment, background noise)
- Enables detection of sentiment, affect and intentions

Objectives

Task 2.1: Environmentally robust acoustic features

Task 2.2: Environmentally robust visual features

→ Robust visual feature extractor (D2.2, February 2016, M13)

Task 2.3: Cross-lingual language-related features

Facial Landmark Tracking

- Goal: to accurately track facial landmarks in SEWA applications.
- Further requirements:
 - ✤Reliability.
 - High processing speed.

Incremental Face Alignment

- Given new unseen examples, automatically update the existing fitting models.
- Challenges:
 - How to update the model efficiently?
 - How to incorporate new training data?

Cascade Linear Regression (CLR)

- Generate perturbed shapes within a predefined range.
- Compute HOG features around each landmark point.
- Find a function that can map the features to the displacement between the ground truth and perturbed shapes, using CLR:

Parallel-CLR (Par-CLR)

- Learning the cascade of regression is by nature a Monte-Carlo procedure.
 - Collect the statistics for the shape parameters at each level.
 - Draw the perturbations from the distribution to train the regressors in parallel.

Incremental Par-CLR (iPar-CLR)

- Uses incremental linear least squares solution to perform the updates.
- Allows for all the level of the cascade to be updated with new examples independently in parallel.

Software Implementation

iPar-CLR method is implemented into the Chehra tracker.
 Use daemon process for crash recovery.
 Can track 8 streams at 50 fps in parallel.

Now integrated into the SEWA back-end server.

Result on LPFW and Helen Data

Result on SEWA Data

More Result on SEWA Data

Environmentally robust visual features

Facial landmark tracking

Objectives

- Task 2.1: Environmentally robust acoustic features
 - → Improved acoustic feature extractor (D2.1, October 2015, M9)
- Task 2.2: Environmentally robust visual features
- Task 2.3: Cross-lingual language-related features

Environmentally robust acoustic features

- 1. Selection of features that are correlated with target labels in noisy data
- State-of-the-art acoustic emotion recognition feature sets
- Bag-of-audio-words (BoAW) representations (generated, e.g., by Vector Quantisation or Deep Semi-NMF)
- 2. Feature enhancement by deep de-noising auto-encoders such as LSTM-RNN
- On raw spectral features (as in previous studies on ASR)
- Learning of non-linear distortions in

 (a) Emotion-related features, e.g., low-level descriptor contours
 (b) BoAW representations

State-of-the-art feature sets

Selection of noise robust features:

- 132 features, including prosody, voice quality, auditory spectrum, spectral / cepstral and deltas
- Data: RECOLA
- Noise: "Smartphone"
- 1. convolutive, IR from Google Nexus one
- 2. + reverberation (convolutive)
- 3. + CHiME noise (additive, 6 dB SNR)

State-of-the-art feature sets

Bag-of-Audio-Words

Bag-of-Audio-Words

"Detection of Negative Emotions in Speech Signals Using Bags-of-Audio-Words", ACII, 2015

Bag-of-Audio-Words

Time-continuous emotion recognition with BoAW

LLDs:

- MFCC(1-12)
- log-energy

End-2-End Learning

First Deep Learning from the raw signal in Affective Computing

"Adieu features? End-To-End Speech Emotion Recognition using a Deep Convolutional Recurrent Network", ICASSP, 2016 (Winner SPS StTrGr)

Emotion recognition using BoAW

* RECOLA:

- Dyadic conversation in French
- 46 subjects x 5 min = 230 min
- 6 annotators

	000								
Model	Arousal	Valence							
	Test	Test							
BoAW	.753	.430							
BoAW+functionals	.738	<u>.465</u>							
Raw signal (CNN+BLSTM)	.686	.261							
Baseline AVEC 15/16	.382/.648	.187 / .375							

SUBMITTED: "At the Border of Acoustics and Linguistics: Bag-of-Audio Words for the Recognition of Emotions in Speech", Interspeech, 2016

Emotion recognition using BoAW

Optimisation of delay (between shown emotion & gold standard) and window size

Deep Semi-NMF

- Representation of acoustic features similar to **Bag-of-Audio-Words**
- Deep Semi-NMF model learns a hierarchical structure of features
- Experiments:
- **Berlin Emo-DB**
- Acoustic features: eGeMAPs (88 selected LLDs with functionals)
- Results:
- eGeMAPs:
- eGeMAPs w/ Deep Semi-NMF: 82.5 % (UA)

78.2 % (UA)

To train de-noising auto-encoders, **stereo** data (noisy recordings with corresponding time-aligned clean recordings) are required.

- 1. Data generated **artificially**, simulating various room reverberation parameters and additive ambient noise
- 2. Artificial data **augmented by real-life data** by means of semisupervised learning

- Acoustic features corrupted by noise (recordings `in the wild`)
- Denoising autoencoders: remove distortions from features

Results:

- Database: RECOLA
- Task: Arousal
- Baseline: LSTM
- Noise: CHiME noise w/ SNRs (12 dB \rightarrow 0 dB)

		clean	12 dB	9 dB	6 dB	3 dB	0 dB
No feature enhancement	ccc	<u>.661</u>	.556	.526	.472	.420	.329
Feature enhancement	ссс	.467	<u>.648</u>	<u>.631</u>	<u>.612</u>	<u>.521</u>	<u>.368</u>

Enhancement of the raw speech signal

Deep LSTM-RNN enhanced Fbank/ **RNN**signal feature feature enhanced speech MFCC based speech extraction enh. enh. features signal prediction features signal noisy speech 11 clean speech noisy speech clean speech DLSTM-LSTMfeatures \boldsymbol{x}_{t}^{d} signal S_t^d : RNN \rightarrow features x_t^c RNN \rightarrow signal S_t^c

Speech Enhancement by Deep LSTM-RNN for Continuous Emotion Regression

validation set of RECOLA

test set of RECOLA

Environmentally robust acoustic features

- Selection of features that are correlated with target labels in noisy data
- State-of-the-art acoustic emotion recognition feature sets
- Bag-of-audio-words (BoAW) representations (generated, e.g., by Vector Quantisation or Deep Semi-NMF)
- 2. Feature enhancement by deep de-noising auto-encoders such as LSTM-RNN
- On raw spectral features
- Learning of non-linear distortions in
 (a) Emotion-related features
 (b) BoAW representations

Objectives

- Task 2.1: Environmentally robust acoustic features
- Task 2.2: Environmentally robust visual features
- Task 2.3: Cross-lingual language-related features
 - → Improved acoustic-linguistic feature extractor

Imperial College

london

(D2.3, February 2016, M13)

Automatic speech recognition

Automatic speech recognition

Based on Kaldi toolkit

- Features: MFCCs + Δ + $\Delta\Delta$
- AM: Context-dependent triphone models trained by hybrid DNN-HMM
- LM: Kneser-Ney smoothed backoff 4-gram LM
- Training: LibriSpeech (1000 hours of audiobooks, 2.3k speakers)
- Pre-trained LM, trained on 14.5k books taken from Project Gutenberg

Automatic speech recognition

Results on LibriSpeech corpus:

	WER	(%)
Data set	Panayotov, ICASSP 2015	Uni Passau
Test clean	5.51	<u>5.30</u>
Test other	13.97	<u>13.68</u>

Panayotov et al.: LibriSpeech: An ASR Corpus Based on Public Domain Audio Books, ICASSP, 2015

Training corpora in-domain: Buckeye, COSINE

 AM Enhancing for noisy/reverberated speech recognition
 Feature enhancement (FE) + multi-stream (MS) by BLSTM-RNN

Experimental results

- Buckeye corpus (spontaneous)
- train/dev/test = 20.7 h / 2.6 h / 2.4 h
- vocab size = 9.1k words
- CHiME noise
- BLSTM-RNN: 3 hidden layers
 Features: MFCC 1-12 + log-energy

	SNR [SNR [dB]												
WER [%]	-6	-3	0	3	6	9	Avg.	Clean						
Clean	78.8	76.9	74.6	72.2	69.2	65.5	72.9	49.0						
Noisy	74.8	72.6	69.9	68.4	65.8	63.0	69.1	56.2						
Noisy + FE	67.5	65.6	62.8	61.4	59.1	56.9	62.2	55.6						

Experimental results

- WSJ0 corpus
- Reverberated by Aachen IR database
- Training w/ reverberation (w/o stairway)

	Tested on					
WER [%]	Stairway 1_90	Stairway 2_90	Stairway 3_45	Stairway 3_90	Stairway 1_135	Avg.
Baseline	40.6	70.0	93.3	86.5	89.5	76.0
+ FE	19.6	30.0	63.0	38.5	51.5	40.5
+ re-training	21.5	28.5	47.1	32.4	38.7	33.6
Reverb. Train	19.4	30.1	56.7	43.2	51.9	40.3
+ FE	18.5	24.6	42.5	29.4	36.1	30.2

Experimental results

- WSJ0 corpus
- Track 2 of CHiME 2013

	SNR [df	3]						
WER [%]	-6	-3	0	3	6	9	Avg.	
Baseline	70.4	63.1	58.4	51.1	45.3	41.7	55.0	
FE	62.0	54.6	50.1	44.7	40.3	37.0	48.2	
FE + re-training	56.9	50.3	45.1	39.3	34.6	31.8	43.0	
MS	58.6	50.1	43.9	37.1	32.7	28.3	41.8	
FE+re-training+MS	56.1	48.3	40.5	35.9	31.1	27.7	39.9	

Acoustic-linguistic features

- Implemented in Java
- Fast and flexible
- Multiple input/output formats: ARFF, CSV, Libsvm
- JUnit tests
- Open source: GitHub repository

- Generates single feature vector of acoustic, visual & textual features
- Preprocessing: standardisation, normalisation, VAD
- Windowing
- Supervised codebook generation
- Split vector quantisation
- Multiple assignments
- Soft vector quantisation
- Term-frequency/inverse document-frequency weighting
- N-grams, stopping
- Histogram normalisation

Natural language processing with openXBOW

- Gender recognition on SEWA (from transcriptions) 2-grams, log-IDF weighting, Naïve Bayes (10-fold CV):
- British: 72.7 % (UA)
- German: 75.6 % (UA)
- Cross-language gender recognition multilingual dictionaries (10-fold CV):
- British → German: 62.1 % (UA)
- German → British: 59.1 % (UA)

Natural language processing with openXBOW

Sentiment analysis: *Thinknook* database 1.5 Mio tweets, +/- sentiment

- WA: <u>75.8</u> % (UA: 74.8 %)
- WA: 75.0 % is state-of-the-art by Thinknook

"@MariaLKanellis U know what I was thinking about? What u sang at Otiz, was it one of your secret recordings? Loved it anyway... Jay" \rightarrow positive

Acoustic landmarks

- Overcome the problem of language dependence in ASR
- Extract acoustic landmarks from f0 / energy contours
- Find significant changes in speech production or perception
- More robust to noise and acoustic variations due to emotional encoding
- 1. Voiced/unvoiced segments: Based on continuity of the *f0 contour*
- 2. Pseudo-vowels: Unsupervised detection of vocalic nuclei
- 3. P-center: Rythmic prominence of speech

Acoustic landmarks

❖ Landmarks constitute a language independent dictionary
 → BoW features are generated

Results on the SEMAINE corpus:

Dimension	Partition	UA (%)		
Arouad	Development	59.6		
Arousar	Test	60.2		
Valanaa	Development	56.7		
valence	Test	55.6		

Acoustic-linguistic features

Retrieve features related to linguistic content, largely language and context-independent

- Multi-lingual dictionaries for BoAW generated from fully automatic syllabification of unlabelled multi-lingual speech data
- Generation of language-independent bag-of-words (BoW) type representations by ASR, natural language processing and machine translation systems: stemming, dictionary lookup and/or machine translation
- Linguistic Inquiry and Word Count (LIWC) features can be generated from ASR outputs in twelve different languages open source

Further work (selected)

Face Reading from Speech – Predicting Facial Action Units from Audio Cues Interspeech 2015

UA [%]	Mean
SVM	57.3
Deep NN	<u>65.0</u>

		Upper Face	Action Units				
AU 1	AU 2	AU 4	AU 5	AU 6	AU 7		
10	3	100-100	100	-			
Inner Brow	Outer Brow	Brow	Upper Lid	Cheek	Lid		
Raiser	Raiser	Lowerer	Raiser	Raiser	Tightener		
*AU 41	*AU 42	*AU 43	AU 44	AU 45	AU 46		
06	0 C	00	36	00	00		
Lid	Slit	Eyes	Squint	Blink	Wink		
Droop		Closed					
		Lower Face	Action Units				
AU 9	AU 10	AU 11	AU 12	AU 13	AU 14		
12		100	100	-	-		
Nose	Upper Lip	Nasolabial	Lip Corner	Cheek	Dimpler		
Wrinkler	Raiser	Deepener	Puller	Puffer			
AU 15	AU 16	AU 17	AU 18	AU 20	AU 22		
12	NE)	- BE			Ö		
Lip Corner	Lower Lip	Chin	Lip	Lip	Lip		
Depressor	Depressor	Raiser	Puckerer	Stretcher	Funneler		
AU 23	AU 24	*AU 25	*AU 26	*AU 27	AU 28		
1		-	N=	e			
Lip	Lip	Lips	Jaw	Mouth	Lip		
Tightener	Pressor	Part	Drop	Stretch	Suck		

Further work (selected)

Cross Lingual Speech Emotion Recognition Using Canonical Correlation Analysis on Principal Component Subspace IEEE ICASSP 2016

Cross-Language Acoustic Emotion Recognition: An Overview and Some Tendencies IEEE/AAAC ACII 2015

Enhanced Semi-supervised Learning for Multimodal Emotion Recognition IEEE ICASSP 2016

Continuous Estimation of Emotions in Speech by Dynamic Cooperative Speaker Models IEEE Transactions on Affective Computing

Further work (selected)

AVEC 2015 – The First Affect Recognition Challenge Bridging Across Audio, Video, and Physiological Data ACM Multimedia 2015

The ICL-TUM-PASSAU Approach for the MediaEval 2015 "Affective Impact of Movies" Task MediaEval 2015 (<u>Winning team (1./2./3. arousal/valence/violence – 22 registered teams</u>)) Video: CNN of 1000 objects to detect (ILSVRC 2013)

negative

neutral

ositive

Demo

															beh	avi	our					
											fa	ce 🎗	aud	ĩo	an	alys	sīs		applications			
Mileston	es			11		M1			M2			feat	ures		M3						M4	
Month 1	1	3	5	7	9	11	13	15	17	19	21	23	25	27	29	31	33	35	37	39	42	
WP1		Dat	a acc anr	uisi otat	tion a ion	and	S de r	SEWA DB design and release														
WP2	De	evelo ss-la	opme angua fe	nt of age a atur	robu audio es	stano -visua																

(D2.2, Feb 16, M13)

- → Robust visual feature extractor
- → Improved acoustic-linguistic feature extr. (D2.3, Feb 16, M13) √

WP2: Low-level Feature Extraction

Björn Schuller

Automatic Sentiment Analysis in the Wild